Aerosol Retrieval Algorithm: Updates since Sept. 2014

Rob Loughman, Ernest Nyaku, Ghassan Taha, PK Bhartia, Nick Gorkavyi, Zhong Chen (Dec. 4, 2014)

Background

 The combined retrieval algorithm (LP_EDR_NASA) was split into ozone and aerosol components in Dec. 2013.

 More recent changes (Sept. – Oct. 2014) alter how the aerosol retrieval (LP-L2-AER) works.

Mission Statement

- Initially, we seek a simpler algorithm, with easierto-understand products and residuals
- But we want to avoid a massive, time-consuming code overhaul.
 - All changes were introduced by modifying existing code (not creating new code modules).
 - Resulting new code is archived on the shared TLCF system for common use / testing.
- So the logic of the algorithm is now much simpler, but the code remains unnecessarily complicated (with many disabled functions, etc.) for now...

1. Turn off the cloud height retrieval algorithm.

- The former algorithm detected a "cloud" when radiance profile slope changed rapidly across the spectrum, and cut off retrieval at "cloud top" altitude
- Some detected "cloud tops" appear to be aerosol layers.
- Future: Use realistic cloud optical properties in a better cloud detection algorithm.

2. Turn off the aerosol size distribution (ASD) retrieval algorithm.

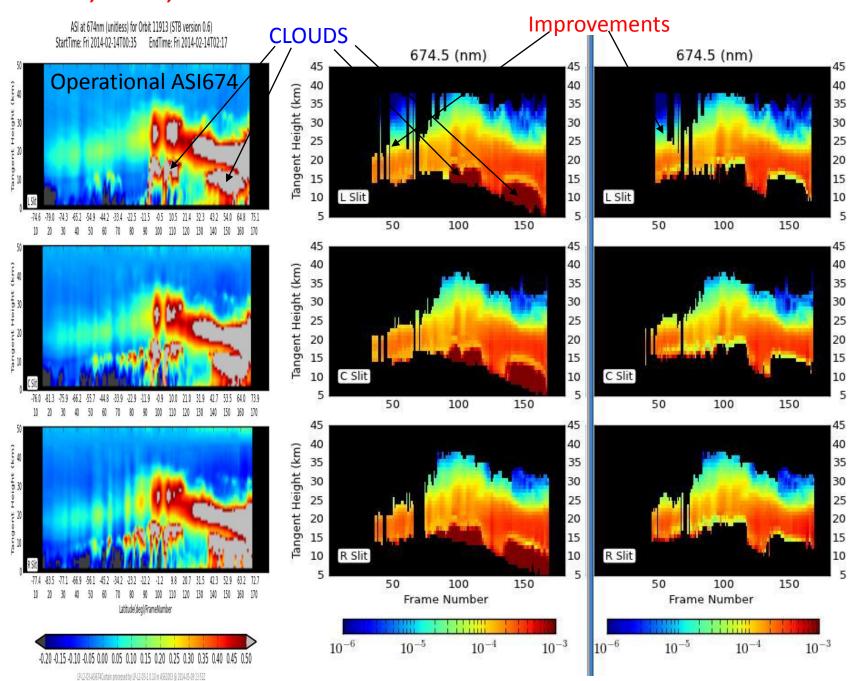
- Most OMPS LP observations have little ASD sensitivity.
- So just assume a single-mode log-normal ASD when retrieving the aerosol extinction coefficient profiles $\theta_a(\lambda,z)$

3. Retrieve aerosol extinction at just 1 wavelength.

- The single-wavelength algorithm depends on just one well-characterized wavelength (currently 675 nm, which has been studied for the ozone retrieval).
- Other wavelengths can be tried with this approach (e.g., Ghassan Taha's current work).

4. Use the assumed ASD + Mie theory to estimate the aerosol extinction at all other wavelengths.

Rationale:


• Using Mie theory provides logical consistency between the assumed aerosol phase function and $\theta_a(\lambda, z)$ for each wavelength.

5. Turn on the "radiance reconstruction" step.

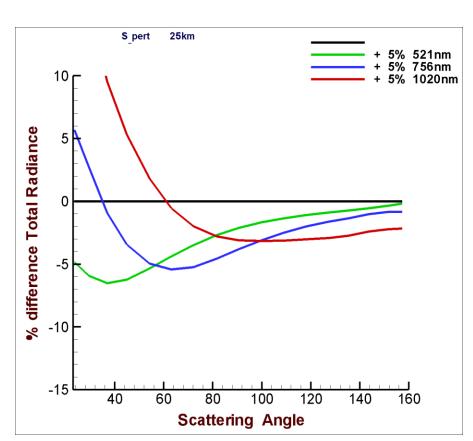
- This final step of the algorithm calculates radiances using the retrieved profiles.
- This creates useful residuals (comparing measurements to model calculations), for quality assessment of the retrievals see Nick Gorkavyi slide ahead.

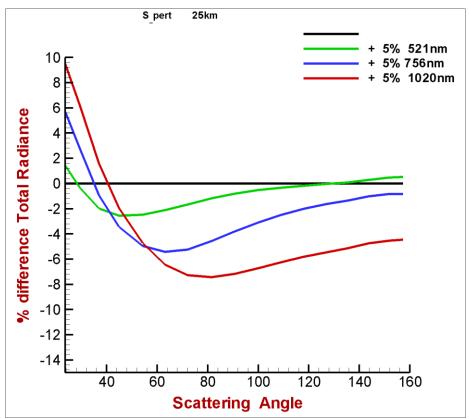
Rob' aerosol extinction

Operational aerosol ext.

Notes on current algorithm performance

Current retrieval works deeper into SH.


Current retrieval works to lower altitudes.


•Current retrieval reduces large ASI / residuals in NH? (TBD...)

Radiance sensitivity to 5% change in ASD mode width (at 25 km)

Fix θ_a (756 nm) + use Mie theory

Fix $\theta_a(\lambda)$ at each wavelength

Notes on ASD sensitivity

- When ASD is perturbed, the resulting radiance change has little wavelength sensitivity for most of the orbit:
 - until scattering angle $< 70^{\circ}$ or so (including 1 μ m)
 - until scattering angle $< 50^{\circ}$ or so (if longest λ is 0.756 μ m).
 - Good news: Retrieval of $\theta_a(\lambda, z)$ should usually be fairly robust (tolerating poor ASD knowledge).
 - Bad news: If ASD information is sought, it can only be obtained in NH (& even then, its quality will depend greatly on the $\lambda \rightarrow 1$ μm observations).

Future work

- Implement + test better cloud detection algorithm
 - Need to distinguish among cirrus clouds, PSCs, and aerosols for proper interpretation of UT/LS observations.
- Verify improved residuals with new algorithm
- Assist with stray light investigation (if needed)
- Assist with characterization of NIR wavelengths (if needed)
- If necessary, implement a module for ASD information – beging with forward scattering only.

BACKUP SLIDES

1. Turn off the cloud height retrieval algorithm.

- The former algorithm detected a "cloud" when radiance profile slope changed rapidly across the spectrum
- Retrieval was cut off at "cloud top" altitude
- Some "cloud tops" appeared to be aerosol layers.
- A future cloud detection algorithm will better incorporate cloud optical properties (i.e., large crystals / droplets vs small aerosols).

2. Turn off the aerosol size distribution (ASD) retrieval algorithm.

- The former algorithm used the wavelength dependence of the aerosol extinction coefficient θ_a to update the initial ASD guess.
 - -This ASD update was applied to all observations, even though many have little ASD sensitivity.
 - The ASD update also neglected the aerosol phase function variation with wavelength.

2. Turn off the aerosol size distribution (ASD) retrieval algorithm.

- For these reasons, the ASD update did not consistently improve the θ_a retrieval (in terms of reducing the radiance residuals), and also made the residuals difficult to interpret.
- A future ASD algorithm appears possible, but will be tried only after more thorough testing of the θ_a retrieval.

3. Retrieve aerosol extinction at just 1 wavelength.

- The former algorithm retrieved θ_a at several wavelengths.
- The single-wavelength algorithm is simpler, & depends on just one well-characterized wavelength (currently 675 nm, which has been used in the ozone retrieval).
- Other wavelengths can be studied for consistency with this approach.

4. Use the assumed ASD + Mie theory to estimate the aerosol extinction at all other wavelengths.

- The former algorithm used an Angstrom coefficient framework to characterize $\theta_a(\lambda)$.
 - The necessary connection between the assumed ASD and $\theta_a(\lambda)$ was lost in this approach.
- Using Mie theory instead provides logical consistency between the assumed aerosol phase function and $\theta_a(\lambda)$, which was lacking in the former approach.

5. Turn on the "radiance reconstruction" step.

- The former algorithm skipped the final step of calculating radiances using the retrieved profiles, due to run-time concerns.
- Turning it back on allows us to create useful residuals (comparing measurement to model calculations), for quality assessment of the retrievals.